Grain moisture
– guidelines for measurement
Why moisture matters

Moisture content is critical from harvest, through storage, to final sale of cereals and oilseeds. If moisture is too high, there is a risk of quality reduction, or even crop loss in store. On the other hand, excessive drying is wasteful and can lead to reduced returns.

Balancing these opposing risks is not easy due to the variable nature of grains within a bulk and the inherent difficulties of measuring grain moisture accurately.

Cereals and oilseeds which are too moist in storage can be subject to:

- mould growth and mycotoxin production
- mite infestations, especially in rapeseed
- heating due to moulds and mites
- sprouting.

Grain which is over-dried before, or during, storage can result in:

- splitting and cracking
- impaired quality, particularly in rapeseed
- wasteful energy use.

Grain contracts specify moisture content which, if not met, will result in penalties.

Assessing moisture content on the farm

Moisture meters and probes, available for farm use, measure an electrical property related to moisture content, rather than grain moisture itself. Meters and probes rely on an inbuilt calibration between moisture and either electrical capacitance or resistance.

Meters and probes are calibrated against oven-based moisture determinations.

All probes and capacitance meters use whole grain samples.

Most resistance meters use a ground sample.

Accuracy: ±0.5% at best

Meters are calibrated to operate most accurately within a specific moisture range, typically 11–20%.

Causes of variation:

- inadequate grinding, if required
- temperature differences between grain and meter/probe
- poor maintenance
- damaged probe or measuring cell
- depth of probe insertion
- grain moisture outside range of meter/probe
- contaminants, eg soil, screenings
- out of calibration.

Measuring moisture content in the laboratory

The most accurate method of measuring grain moisture content is the standard oven-based test, which uses an ISO-specified protocol to dry a prepared sample of ground grain in a special laboratory oven (ISO 712).

The weight lost during drying is used to calculate the moisture of the sample.

Accuracy: within 0.15%

Causes of variation:

- unrepresentative grain sample
- inadequate grinding
- incorrect oven drying time
- uneven oven temperature.
Managing moisture: project findings

These guidelines are partly based on an HGCA-funded project on grain moisture measurement, led by the Central Science Laboratory (CSL) using wheat and barley from the 2006 and 2007 harvest seasons. They also draw upon broader experience from research and practice.

The project aimed to:
- evaluate differences in measurement over the drying and storage periods
- assess variation between wheat varieties
- check consistency and accuracy of meters and quantify common errors in usage.

The project, conducted in collaboration with meter manufacturers, involved:
- surveying the views and practices of 158 farmers
- investigating specific issues on farm
- comparing meters in laboratory conditions.

Relevant results from the project are summarised below.

Project finding

<table>
<thead>
<tr>
<th>Moisture meters - overview</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many farmers and storekeepers did not have their meters calibrated, or maintained, regularly.</td>
<td>Ensure calibration and maintenance is undertaken each year. Ideally, return annually to manufacturer. Type of meter is not an issue.</td>
</tr>
<tr>
<td>Laboratory and on-farm tests gave equally accurate and consistent results for all meters tested – both capacitance and resistance.</td>
<td></td>
</tr>
</tbody>
</table>

Meter testing

Meter tests showed that for wheat and barley:
- at around 15%, meters were usually within ±0.5% of the oven test
- at 18% or above, meters tended to under-read by as much as 1%
- repeat testing of the same sample gave meter readings within ±0.3%
- sample variation resulted in discrepancies of up to ±1%
- poor operator practice resulted in errors of up to ±1%
- moisture content variability increased in freshly-harvested grain, even within well-mixed samples.

Inference
- It is prudent to treat meter readings conservatively.
- In the project, farmers who allowed a 0.5% safety margin never had claims for excess moisture.
- Be especially wary of results on moist grain and the increased risk of mycotoxin contamination.
- Take sufficient sub-samples to achieve a representative composite sample (see Grain sampling – a farmer’s guide, 2003, HGCA).
- Always follow instructions on meter use.
- Expect greater variability with freshly-harvested grain than with grain stored for some time.
Project finding

<table>
<thead>
<tr>
<th>Sample preparation</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample variability had the greatest influence on consistency.</td>
<td>Obtain a well-mixed sample that is representative of the bulk to be tested.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitance meters</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Readings from freshly-dried grain were 0.4% lower than same samples re-analysed a week later.</td>
<td>Allow for an apparent 0.4% moisture content increase when analysing freshly-dried grain with a capacitance meter.</td>
</tr>
<tr>
<td>Readings from a meter at an angle of 30 degrees were 0.4% lower than from a level meter.</td>
<td>Use meters on level surfaces.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grinding samples for resistance meters</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Errors with finely-ground samples were greater (±0.6%) than those with coarsely-ground samples (±0.3%), when both were compared with oven test results.</td>
<td>Coarse grinding is sufficient and further grinding results in less accuracy.</td>
</tr>
<tr>
<td>Readings were 1% lower when a worn grinder was used.</td>
<td>Ensure that grinder is properly maintained.</td>
</tr>
<tr>
<td>Inadequate compression resulted in lower readings.</td>
<td>Compress ground sample as specified.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The effect of temperature</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Errors of up to ±1% occurred when sample and meter temperatures differed by 15°C.</td>
<td>Allow sufficient time for meter and grain temperatures to equilibrate.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variety or variety type</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>No differences were found using four meters to compare 20 wheat varieties – 13 with hard and 7 with soft endosperm.</td>
<td>Use one calibration for UK wheat only.</td>
</tr>
<tr>
<td>Where a meter had two calibrations for wheat the soft calibration was the most accurate for both varieties.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Moisture probes</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probes were not as accurate as meters in the tests. However, probes gave consistent and reliable results.</td>
<td>Use probes to rapidly monitor the moisture content of grain within a bulk; not in place of meters to assess moisture content of samples.</td>
</tr>
<tr>
<td>Both types of probe – resistance and capacitance – were equally accurate, but resistance probes only gave a steady reading once probe and grain temperatures had stabilised after a minute or more.</td>
<td>Allow time for temperature of grain and probe to stabilise.</td>
</tr>
<tr>
<td>Depth of insertion affected both types. Low readings resulted at less than 0.5m depth.</td>
<td>Insert probe to the correct depth.</td>
</tr>
</tbody>
</table>
Practical pointers

Meter and probe maintenance

Routine maintenance is important for good practice and to comply with farm assurance protocols.

When checking a moisture meter/probe it is important to:

- Test samples before harvest if possible to confirm meter function.
- Only use samples from a TASCC-approved or UKAS-accredited laboratory.
- Check against several samples covering at the very least 14% to 16% moisture.
- Ideally take meter to location where samples were prepared.

On-farm adjustments are not recommended. DIY adjustments usually increase errors.

Preparing samples

To minimise errors a well-mixed, representative sample should be taken. Care should be taken to avoid contaminants, eg soil or screenings.

The effect of temperature

Allow meter and grain sample to achieve the same temperature – usually a few minutes. This is particularly important when meter is stored in a cooler/warmer environment than the grain.

Allow a longer equilibrium period when using a probe in grain recently placed in store.

Getting the best out of your meter

- Select correct calibration for crop to be tested.
- Keep measuring cell clean and free from contamination.
- Always allow a safety margin, as errors are frequently ±0.5% and much more in very wet, very dry or freshly harvested grain.
- Assess your meter function over a period:
 - Do results change after harvest?
 - Does it read high or low with very wet grain?
 - How do results with your meter compare with those on the same samples sent to merchant(s)?
 - If errors consistently occur, have your meter checked. If in doubt, or errors are large, return meter to the manufacturer.
- For trading without penalties allow a margin of safety.

Remember, moisture measurement is not an exact science.

Loading capacitance meters

Use loading devices supplied. It is very important to fill meters with the specified quantities of grain and to keep the meters level.

Grinding samples for resistance meters

Clean and lubricate compressor plunger threads daily. Check grinder regularly for wear.

If a specific grinder is not supplied with the meter, crack grains into two or three pieces. Acceptable results can be achieved with a coffee grinder, but avoid grinding too finely as moisture may be reduced.
Acknowledgements

These guidelines were funded by HGCA and were written by David Armitage and Tim Wonter-Smith, CSL; and Robin Wilkin, consultant.

It is based on an HGCA-funded project led by CSL and involving the collaboration of moisture meter companies and farmers.

HGCA acknowledges the help of all who have commented on drafts of this publication including: Jane Johnson, Genesis; Dr Simon Hook, Professor Graham Jellis and Dr Roger Williams, HGCA; Dr Jonathan Knight, Imperial College; Jennie Richards and Colin West, MAGB; Guy Gagen, NFU; as well as David Bruce, consultant and farmers Andrew Cragg and Stewart Vernon.

We are also indebted to the companies or their UK agents who provided equipment and assistance (Farm-Tec, Martin Lishman, Marconi, Sinar), to the many farmers who participated in on-farm testing and to the 158 farmers who participated in the moisture meter workshop at LAMMA 2007 and responded to surveys.

Editors: Dr Clive Edwards, HGCA and Geoff Dodgson, Chamberlain.

Design by Chamberlain.

Further information

HGCA publications

Grain sampling – a farmer’s guide (2003)
Grain sampling from field to buyer – understanding variation (2004)
Project Report 426 (2008) Research to develop practical user guidelines to maximise the accuracy of moisture meters

British and International Standards

<table>
<thead>
<tr>
<th>Standard number</th>
<th>Title</th>
<th>International equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS 4317 Part 26 (1991)</td>
<td>Measurement of temperature of grain during bulk storage</td>
<td>ISO 4112</td>
</tr>
</tbody>
</table>

Moisture meter contacts

Marconi
Dr J E Egleton
Lavender Lodge
81 Pinchbeck Road
Spalding, Lincs
PE11 1QF
Tel: 01775 711800

davidh@sinar.co.uk
markc@sinar.co.uk

Farm-Tec
(Dickey John)
Andrew Wells
andrewfarmtec@aol.com

Martin Lishman
(Protimeter)
Gavin Lishman
gavin@martinlishman.com

Disclaimer

The HGCA has provided funding for the project on which these guidelines are based but has not conducted the research or written the guidelines. While the authors have worked on the best information available to them, neither the HGCA nor the authors shall in any event be liable for any loss, damage or injury howsoever suffered directly or indirectly in relation to the guidelines or the research on which it is based.

Reference herein to trade names and proprietary products without stating that they are protected does not imply they may be regarded as unprotected and thus free for general use. No endorsement of named products is intended, nor is any criticism implied of other alternative, but unnamed products.

© HGCA 2008