Managing clubroot in oilseed rape

Clubroot is an increasing problem in oilseed rape crops and has been exacerbated by close rotations. Plants can wilt in hot, dry weather, be very stunted or can be lost completely.

The galls on roots formed by the clubroot pathogen, *Plasmodiophora brassicae*, affect normal root function, reducing water and nutrient uptake.

Large root galls on the taproot (Figure 1) will commonly break down with secondary rots so that root function is seriously impaired. As the gall decays, spores are released back into the soil.

Yield losses

Yield loss correlates with clubroot severity. AHDB Cereals & Oilseeds-funded research (Project Report 487) reported a yield loss of 0.03 t/ha per 1% of plants infected (Figure 2).

Losses can, therefore, exceed 50% of yield potential in affected crops and management strategies are required for affected fields.

In severe autumn infections, plant losses can be so high that the crop has to be abandoned.

Latest information

- At sites with high levels of infection, resistant varieties (eg Cracker) have been found showing symptoms.
- A new resistant variety, Mentor, is available; resistance may be based on a single gene, so over-reliance in short rotations should be avoided.

Action

- Get soils tested for clubroot and pH and use the results to plan farm strategy.
- Alternate oilseed rape with cereals and alternative break crops like legumes. Rotations of greater than one year in five are likely to be beneficial.
- Avoid early sowing on infected sites.
- Avoid over-reliance on resistant varieties in short rotations.

Risk factors

Clubroot can persist in soils for at least 15 years as thick-walled resting spores which germinate in the presence of host crops and weeds in the cruciferous family (Brassicaceae). Wet conditions enable motile swimming spores to disperse and infect roots; flooding can accelerate spread.

Clubroot can be spread by:
- water movement in soil
- inadvertent soil transfer on machinery

It can also be spread onto clean land through the dumping of infected vegetables, for example swedes, or in manure from animals fed on infected produce.

Clubroot is widely distributed throughout the UK and has been found in all regions. It is more prevalent in:
- Scotland and western regions with a history of mixed farming and high rainfall
- short rotations of oilseed rape

Acidic soils and warm, wet autumns and springs can increase disease severity. Clubroot development ceases below 15°C. Climate change predictions of warmer temperatures mean that disease pressure is likely to increase. Increased numbers of flooding events will also accelerate spread.

Yield losses

Yield (t/ha at 91% dry matter) = -0.0292x + 3.6568

\[R^2 = 0.2371 \]

Figure 2. Yield losses to clubroot in field trials (P = 0.001). Clubroot is given as a weighted index where 1 = slight, 2 = moderate and 3 = severely infected. If every plant were infected to a severe level (3), this would be shown as 100%.

R² is a measure of how much of the variation in yield from site to site could be explained by the level of clubroot (R²=1 would be 100% of the variation explained).
Rotation

Lengthening rotations is the most sustainable long-term strategy for managing clubroot, as both soil amendments and varietal control can be inconsistent.

Cruciferous weeds will also carry infection and reduce the benefits of break crops like cereals, potatoes or legumes. Vegetable brassicas are susceptible and so do not act as a break crop.

Rotations of longer than one year in five are likely to be helpful. Annual crop choices are often driven by commodity pricing but thinking longer term about plans for fields and balancing the benefits of longer rotations in infected fields against short rotations with high yield losses may be beneficial.

Soil pH

Clubroot severity is linked to soil pH and crops in acidic soils are more at risk of severe symptom development. Although the clubroot pathogen is highly resilient and will survive and infect even at high soil pH levels, soil amendments that raise the pH and calcium content of soils can be effective.

A spike in pH and available calcium at drilling has been shown to reduce clubroot infection. A neutral or alkaline pH (7+) will be most effective in reducing clubroot in oilseed rape and vegetable crops, but consider the wider rotation when raising pH over 6.5 as following cereal and potato crops can suffer from nutrient deficiencies.

Field trials in an AHDB Cereals & Oilseeds-funded project (Project Report 487) where LimeX70 (calcium carbonate) was applied just before drilling at 8 t/ha gave average control of 25% over the trial series with modest yield benefits. However, control was variable, ranging from 0–90% control at different sites.

The reason for this variability was not clear but poor control was noted at very severely infested sites and oilseed rape should not be grown where clubroot levels are very high. Not all forms of lime are equal and finely ground forms have been shown to be more effective.

Yield benefits were sometimes cost-effective in the trial series but, even where there is no immediate cost-benefit, liming should be considered as part of a long-term strategy for reducing clubroot build-up in affected fields.

Resistant varieties

The resistant varieties Mendel (Figure 3) and Cracker offer good control (often greater than 95%) in most areas of the UK.

Mendel and Cracker gave more consistent trial results than soil amendments, apart from at sites where they had already been repeatedly used in previous rotations. Resistance to clubroot is also offered through the variety Mentor, added to the Recommended List in 2015/16.

Trials have shown that varietal resistance to clubroot is under pressure in some areas of the UK, particularly in the north east of Scotland, and has broken down in areas where it has been commonly used. When varieties share the same resistance mechanism, strains of clubroot that can overcome the resistance mechanism can build up in successive crops. Over-reliance on resistant varieties in short rotations will increase this risk and should therefore be avoided.

(Note: There is a potential yield penalty associated with Mendel and Cracker in the absence of clubroot compared with some other varieties.)

Further information

Amanda Bennett, AHDB Cereals & Oilseeds amanda.bennett@ahdb.org.uk
Fiona Burnett, SRUC fiona.burnett@sru.ac.uk

Clubroot testing is carried out at Fera and SRUC:
www.fera.defra.gov.uk/plants/plant Clinic
www.sru.ac.uk/crops

G65: Oilseed rape guide (AHDB, 2015)

Project Report 487: Management of clubroot (Plasmopara brassicae) in winter oilseed rape (AHDB, 2013)
cereals.ahdb.org.uk/disease
cereals.ahdb.org.uk/varieties

Publications orders 0845 245 0009
cereals.publications@ahdb.org.uk

Reference herein to trade names and proprietary products without stating that they are protected does not imply that they may be regarded as unprotected and thus free for general use. No endorsement of named products is intended, nor is any criticism implied of other alternative but unnamed products.

AHDB Cereals & Oilseeds is a division of the Agriculture and Horticulture Development Board (AHDB).

© Agriculture and Horticulture Development Board 2015. All rights reserved.